Intel shows research for packing more computing power into chips beyond 2025

The Silicon Valley company is working to regain a lead in making the smallest, fastest chips that it has lost in recent years to rivals like Taiwan Semiconductor Manufacturing Co and Samsung Electronics Co Ltd.

Published - December 13, 2021 10:27 am IST

Intel logo.

Intel logo.

Research teams at Intel Corp on Saturday unveiled work that the company believes will help it keep speeding up and shrinking computing chips over the next ten years, with several technologies aimed at stacking parts of chips on top of each other.

(Sign up to our Technology newsletter, Today's Cache, for insights on emerging themes at the intersection of technology, business and policy. Click here to subscribe for free.)

Intel's Research Components Group introduced the work in papers at an international conference being held in San Francisco. The Silicon Valley company is working to regain a lead in making the smallest, fastest chips that it has lost in recent years to rivals like Taiwan Semiconductor Manufacturing Co and Samsung Electronics Co Ltd.

While Intel CEO Pat Gelsinger has laid out commercial plans aimed at regaining that lead by 2025, the research work unveiled Saturday gives a look into how Intel plans to compete beyond 2025.

One of the ways Intel is packing more computing power into chips by stacking up "tiles" or "chiplets" in three dimensions rather than making chips all as one two-dimension piece. Intel showed work Saturday that could allow for 10 times as many connections between stacked tiles, meaning that more complex tiles can be stacked on top of one another.

Also Read : Intel launches new PC chips, says U.S. supercomputer will double expected speeds

But perhaps the biggest advance showed Saturday was a research paper demonstrating a way to stack transistors - tiny switches that form the most basic building bocks of chips by representing the 1s and 0s of digital logic - on top of one another.

Intel believes the technology will yield a 30% to 50% increase in the number of transistors it can pack into a given area on a chip. Raising the number of transistors is the main reason chips have consistently gotten faster over the past 50 years.

"By stacking the devices directly on top of each other, we're clearly saving area," Paul Fischer, director and senior principal engineer of Intel's Components Research Group told Reuters in an interview. "We're reducing interconnect lengths and really saving energy, making this not only more cost efficient, but also better performing."

0 / 0
Sign in to unlock member-only benefits!
  • Access 10 free stories every month
  • Save stories to read later
  • Access to comment on every story
  • Sign-up/manage your newsletter subscriptions with a single click
  • Get notified by email for early access to discounts & offers on our products
Sign in

Comments

Comments have to be in English, and in full sentences. They cannot be abusive or personal. Please abide by our community guidelines for posting your comments.

We have migrated to a new commenting platform. If you are already a registered user of The Hindu and logged in, you may continue to engage with our articles. If you do not have an account please register and login to post comments. Users can access their older comments by logging into their accounts on Vuukle.